Back to Search Start Over

Saturation-Dependence of Dispersion in Porous Media

Authors :
Ghanbarian-Alavijeh, B.
Skinner, Thomas E.
Hunt, Allen G.
Source :
Phys. Rev. E 86 (2012) 066316
Publication Year :
2012

Abstract

In this study, we develop a saturation-dependent treatment of dispersion in porous media using concepts from critical path analysis, cluster statistics of percolation, and fractal scaling of percolation clusters. We calculate spatial solute distributions as a function of time and calculate arrival time distributions as a function of system size. Our previous results correctly predict the range of observed dispersivity values over ten orders of magnitude in experimental length scale, but that theory contains no explicit dependence on porosity or relative saturation. This omission complicates comparisons with experimental results for dispersion, which are often conducted at saturation less than 1. We now make specific comparisons of our predictions for the arrival time distribution with experiments on a single column over a range of saturations. This comparison suggests that the most important predictor of such distributions as a function of saturation is not the value of the saturation per se, but the applicability of either random or invasion percolation models, depending on experimental conditions.

Subjects

Subjects :
Physics - Fluid Dynamics

Details

Database :
arXiv
Journal :
Phys. Rev. E 86 (2012) 066316
Publication Type :
Report
Accession number :
edsarx.1210.4581
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevE.86.066316