Back to Search
Start Over
Asymptotic controllability and optimal control
- Publication Year :
- 2012
-
Abstract
- We consider a control problem where the state must reach asymptotically a target while paying an integral payoff with a non-negative Lagrangian. The dynamics is just continuous, and no assumptions are made on the zero level set of the Lagrangian. Through an inequality involving a positive number $\bar p_0$ and a Minimum Restraint Function $U=U(x)$ --a special type of Control Lyapunov Function-- we provide a condition implying that (i) the control system is asymptotically controllable, and (ii) the value function is bounded above by $U/\bar p_0$.
- Subjects :
- Mathematics - Optimization and Control
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1210.4281
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1016/j.jde.2013.01.006