Back to Search Start Over

Invariants of Four-Manifolds with Flows Via Cohomological Field Theory

Authors :
Garcia-Compean, Hugo
Santos-Silva, Roberto
Verjovsky, Alberto
Publication Year :
2012

Abstract

The Jones-Witten invariants can be generalized for non-singular smooth vector fields with invariant probability measure on 3-manifolds, giving rise to new invariants of dynamical systems [22]. After a short survey of cohomological field theory for Yang-Mills fields, Donaldson-Witten invariants are generalized to four-dimensional manifolds with non-singular smooth flows generated by homologically non-trivial p-vector fields. These invariants have the information of the flows and they are interpreted as the intersection number of these flow orbits and constitute invariants of smooth four-manifolds admitting global flows. We study the case of Kahler manifolds by using the Witten's consideration of the strong coupling dynamics of N=1 supersymmetric Yang-Mills theories. The whole construction is performed by implementing the notion of higher dimensional asymptotic cycles a la Schwartzman [18]. In the process Seiberg-Witten invariants are also described within this context. Finally, we give an interpretation of our asymptotic observables of 4-manifolds in the context of string theory with flows.<br />Comment: 34 pages, no figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1209.4155
Document Type :
Working Paper