Back to Search Start Over

Modeling of random bimodal structures of composites (application to solid propellants): I. Simulation of random packs

Authors :
Buryachenko, V. A.
Jackson, T. L.
Amadio, G.
Publication Year :
2012

Abstract

We consider a composite medium, which consists of a homogeneous matrix containing a statistically homogeneous set of multimodal spherical inclusions. This model is used to represent the morphology of heterogeneous solid propellants (HSP) that are widely used in the rocket industry. The Lubachevsky-Stillinger algorithm is used to generate morphological models of HSP with large polydisperse packs of spherical inclusions. We modify the algorithm by proposing a random shaking procedure that leads to the stabilization of a statistical distribution of the simulated structure that is homogeneous, highly mixed, and protocol independent (in sense that the statistical parameters estimated do not depend on the basic simulation algorithm). Increasing the number of shaking has a twofold effect. First, the system becomes more homogeneous and well-mixed. Second, the stochastic fluctuations of statistical parameters (such as e.g. radial distribution function, RDF), estimated by averaging of these structures, tend to diminish.<br />Comment: 24 pages, 13 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1207.7260
Document Type :
Working Paper