Back to Search Start Over

Asymmetric $2$-colorings of graphs

Authors :
Flapan, Erica
Rundell, Sarah
Wyse, Madeline
Publication Year :
2012

Abstract

We show that the edges of every 3-connected planar graph except $K_4$ can be colored with two colors in such a way that the graph has no color preserving automorphisms. Also, we characterize all graphs which have the property that their edges can be $2$-colored so that no matter how the graph is embedded in any orientable surface, there is no homeomorphism of the surface which induces a non-trivial color preserving automorphism of the graph.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1206.1945
Document Type :
Working Paper