Back to Search Start Over

Asymptotic behavior of the least common multiple of consecutive arithmetic progression terms

Authors :
Qian, Guoyou
Hong, Shaofang
Source :
Arch. Math. 100 (2013), 337-345
Publication Year :
2012

Abstract

Let $l$ and $m$ be two integers with $l>m\ge 0$, and let $a$ and $b$ be integers with $a\ge 1$ and $a+b\ge 1$. In this paper, we prove that $\log {\rm lcm}_{mn<i\le ln}\{ai+b\} =An+o(n)$, where $A$ is a constant depending on $l, m$ and $a$.<br />Comment: 8 pages. To appear in Archiv der Mathematik

Subjects

Subjects :
Mathematics - Number Theory

Details

Database :
arXiv
Journal :
Arch. Math. 100 (2013), 337-345
Publication Type :
Report
Accession number :
edsarx.1204.5415
Document Type :
Working Paper
Full Text :
https://doi.org/10.1007/s00013-013-0510-7