Back to Search
Start Over
Asymptotic behavior of the least common multiple of consecutive arithmetic progression terms
- Source :
- Arch. Math. 100 (2013), 337-345
- Publication Year :
- 2012
-
Abstract
- Let $l$ and $m$ be two integers with $l>m\ge 0$, and let $a$ and $b$ be integers with $a\ge 1$ and $a+b\ge 1$. In this paper, we prove that $\log {\rm lcm}_{mn<i\le ln}\{ai+b\} =An+o(n)$, where $A$ is a constant depending on $l, m$ and $a$.<br />Comment: 8 pages. To appear in Archiv der Mathematik
- Subjects :
- Mathematics - Number Theory
Subjects
Details
- Database :
- arXiv
- Journal :
- Arch. Math. 100 (2013), 337-345
- Publication Type :
- Report
- Accession number :
- edsarx.1204.5415
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1007/s00013-013-0510-7