Back to Search
Start Over
High Resolution Images of Orbital Motion in the Orion Trapezium Cluster with the LBT Adaptive Optics System
- Publication Year :
- 2012
-
Abstract
- The new 8.4m LBT adaptive secondary AO system, with its novel pyramid wavefront sensor, was used to produce very high Strehl (75% at 2.16 microns) near infrared narrowband (Br gamma: 2.16 microns and [FeII]: 1.64 microns) images of 47 young (~1 Myr) Orion Trapezium theta1 Ori cluster members. The inner ~41x53" of the cluster was imaged at spatial resolutions of ~0.050" (at 1.64 microns). A combination of high spatial resolution and high S/N yielded relative binary positions to ~0.5 mas accuracies. Including previous speckle data, we analyse a 15 year baseline of high-resolution observations of this cluster. We are now sensitive to relative proper motions of just ~0.3 mas/yr (0.6 km/s at 450 pc) this is a ~7x improvement in orbital velocity accuracy compared to previous efforts. We now detect clear orbital motions in the theta1 Ori B2/B3 system of 4.9+/-0.3 km/s and 7.2+/-0.8 km/s in the theta1 Ori A1/A2 system (with correlations of PA vs. time at >99% confidence). All five members of the theta1 Ori B system appear likely as a gravitationally bound "mini-cluster". The very lowest mass member of the theta1 Ori B system (B4; mass ~0.2 Msun) has, for the first time, a clearly detected motion (at 4.3+/-2.0 km/s; correlation=99.7%) w.r.t B1. However, B4 is most likely in an long-term unstable (non-hierarchical) orbit and may "soon" be ejected from this "mini-cluster". This "ejection" process could play a major role in the formation of low mass stars and brown dwarfs.<br />Comment: 27 pages, 14 figures, accepted for publication by the Astrophysical Journal
- Subjects :
- Astrophysics - Solar and Stellar Astrophysics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1203.2638
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1088/0004-637X/749/2/180