Back to Search
Start Over
Variations on a theorem of Beurling
- Source :
- Adv. Pure Appl. Math. 6 (2015), no. 3, 135-146
- Publication Year :
- 2012
-
Abstract
- We consider functions satisfying the subcritical Beurling's condition, viz., $$\int_{\R^n}\int_{\R^n} |f(x)| |\hat{f}(y)| e^{a |x \cdot y|} \, dx \, dy < \infty$$ for some $ 0 < a < 1.$ We show that such functions are entire vectors for the Schr\"{o}dinger representations of the Heisenberg group. If an eigenfunction $f$ of the Fourier transform satisfies the above condition we show that the Hermite coefficients of $f$ have certain exponential decay which depends on $a$.<br />Comment: 21 pages
Details
- Database :
- arXiv
- Journal :
- Adv. Pure Appl. Math. 6 (2015), no. 3, 135-146
- Publication Type :
- Report
- Accession number :
- edsarx.1203.1098
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1515/apam-2014-0048