Back to Search Start Over

Variations on a theorem of Beurling

Authors :
Garg, Rahul
Thangavelu, Sundaram
Source :
Adv. Pure Appl. Math. 6 (2015), no. 3, 135-146
Publication Year :
2012

Abstract

We consider functions satisfying the subcritical Beurling's condition, viz., $$\int_{\R^n}\int_{\R^n} |f(x)| |\hat{f}(y)| e^{a |x \cdot y|} \, dx \, dy < \infty$$ for some $ 0 < a < 1.$ We show that such functions are entire vectors for the Schr\"{o}dinger representations of the Heisenberg group. If an eigenfunction $f$ of the Fourier transform satisfies the above condition we show that the Hermite coefficients of $f$ have certain exponential decay which depends on $a$.<br />Comment: 21 pages

Details

Database :
arXiv
Journal :
Adv. Pure Appl. Math. 6 (2015), no. 3, 135-146
Publication Type :
Report
Accession number :
edsarx.1203.1098
Document Type :
Working Paper
Full Text :
https://doi.org/10.1515/apam-2014-0048