Back to Search
Start Over
Galactic winds driven by cosmic-ray streaming
- Publication Year :
- 2012
-
Abstract
- Galactic winds are observed in many spiral galaxies with sizes from dwarfs up to the Milky Way, and they sometimes carry a mass in excess of that of newly formed stars by up to a factor of ten. Multiple driving processes of such winds have been proposed, including thermal pressure due to supernova-heating, UV radiation pressure on dust grains, or cosmic ray (CR) pressure. We here study wind formation due to CR physics using a numerical model that accounts for CR acceleration by supernovae, CR thermalization, and advective CR transport. In addition, we introduce a novel implementation of CR streaming relative to the rest frame of the gas. We find that CR streaming drives powerful and sustained winds in galaxies with virial masses M_200 < 10^{11} Msun. In dwarf galaxies (M_200 ~ 10^9 Msun) the winds reach a mass loading factor of ~5, expel ~60 per cent of the initial baryonic mass contained inside the halo's virial radius and suppress the star formation rate by a factor of ~5. In dwarfs, the winds are spherically symmetric while in larger galaxies the outflows transition to bi-conical morphologies that are aligned with the disc's angular momentum axis. We show that damping of Alfven waves excited by streaming CRs provides a means of heating the outflows to temperatures that scale with the square of the escape speed. In larger haloes (M_200 > 10^{11} Msun), CR streaming is able to drive fountain flows that excite turbulence. For halo masses M_200 > 10^{10} Msun, we predict an observable level of H-alpha and X-ray emission from the heated halo gas. We conclude that CR-driven winds should be crucial in suppressing and regulating the first epoch of galaxy formation, expelling a large fraction of baryons, and - by extension - aid in shaping the faint end of the galaxy luminosity function. They should then also be responsible for much of the metal enrichment of the intergalactic medium.<br />Comment: 25 pages, 14 figures, accepted by MNRAS
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1203.1038
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1111/j.1365-2966.2012.21045.x