Back to Search
Start Over
Realization of a Resonant Fermi Gas with a Large Effective Range
- Publication Year :
- 2011
-
Abstract
- We have measured the interaction energy and three-body recombination rate for a two-component Fermi gas near a narrow Feshbach resonance and found both to be strongly energy dependent. Even for deBroglie wavelengths greatly exceeding the van der Waals length scale, the behavior of the interaction energy as a function of temperature cannot be described by atoms interacting via a contact potential. Rather, energy-dependent corrections beyond the scattering length approximation are required, indicating a resonance with an anomalously large effective range. For fields where the molecular state is above threshold, the rate of three-body recombination is enhanced by a sharp, two-body resonance arising from the closed-channel molecular state which can be magnetically tuned through the continuum. This narrow resonance can be used to study strongly correlated Fermi gases that simultaneously have a sizeable effective range and a large scattering length.<br />Comment: to appear in Phys. Rev. Lett
- Subjects :
- Condensed Matter - Quantum Gases
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1112.5977
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1103/PhysRevLett.108.045304