Back to Search
Start Over
Epsilon-net method for optimizations over separable states
- Publication Year :
- 2011
-
Abstract
- We give algorithms for the optimization problem: $\max_\rho \ip{Q}{\rho}$, where $Q$ is a Hermitian matrix, and the variable $\rho$ is a bipartite {\em separable} quantum state. This problem lies at the heart of several problems in quantum computation and information, such as the complexity of QMA(2). While the problem is NP-hard, our algorithms are better than brute force for several instances of interest. In particular, they give PSPACE upper bounds on promise problems admitting a QMA(2) protocol in which the verifier performs only logarithmic number of elementary gate on both proofs, as well as the promise problem of deciding if a bipartite local Hamiltonian has large or small ground energy. For $Q\ge0$, our algorithm runs in time exponential in $\|Q\|_F$. While the existence of such an algorithm was first proved recently by Brand{\~a}o, Christandl and Yard [{\em Proceedings of the 43rd annual ACM Symposium on Theory of Computation}, 343--352, 2011], our algorithm is conceptually simpler.<br />Comment: 21 pages. Comments are welcome
- Subjects :
- Quantum Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1112.0808
- Document Type :
- Working Paper