Back to Search
Start Over
Random matrices: Law of the determinant
- Source :
- Annals of Probability 2014, Vol. 42, No. 1, 146-167
- Publication Year :
- 2011
-
Abstract
- Let $A_n$ be an $n$ by $n$ random matrix whose entries are independent real random variables with mean zero, variance one and with subexponential tail. We show that the logarithm of $|\det A_n|$ satisfies a central limit theorem. More precisely, \begin{eqnarray*}\sup_{x\in {\mathbf {R}}}\biggl|{\mathbf {P}}\biggl(\frac{\log(|\det A_n|)-({1}/{2})\log (n-1)!}{\sqrt{({1}/{2})\log n}}\le x\biggr)-{\mathbf {P}}\bigl(\mathbf {N}(0,1)\le x\bigr)\biggr|\\\qquad\le\log^{-{1}/{3}+o(1)}n.\end{eqnarray*}<br />Comment: Published in at http://dx.doi.org/10.1214/12-AOP791 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)
- Subjects :
- Mathematics - Probability
Subjects
Details
- Database :
- arXiv
- Journal :
- Annals of Probability 2014, Vol. 42, No. 1, 146-167
- Publication Type :
- Report
- Accession number :
- edsarx.1112.0752
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1214/12-AOP791