Back to Search Start Over

Random matrices: Law of the determinant

Authors :
Nguyen, Hoi H.
Vu, Van
Source :
Annals of Probability 2014, Vol. 42, No. 1, 146-167
Publication Year :
2011

Abstract

Let $A_n$ be an $n$ by $n$ random matrix whose entries are independent real random variables with mean zero, variance one and with subexponential tail. We show that the logarithm of $|\det A_n|$ satisfies a central limit theorem. More precisely, \begin{eqnarray*}\sup_{x\in {\mathbf {R}}}\biggl|{\mathbf {P}}\biggl(\frac{\log(|\det A_n|)-({1}/{2})\log (n-1)!}{\sqrt{({1}/{2})\log n}}\le x\biggr)-{\mathbf {P}}\bigl(\mathbf {N}(0,1)\le x\bigr)\biggr|\\\qquad\le\log^{-{1}/{3}+o(1)}n.\end{eqnarray*}<br />Comment: Published in at http://dx.doi.org/10.1214/12-AOP791 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)

Subjects

Subjects :
Mathematics - Probability

Details

Database :
arXiv
Journal :
Annals of Probability 2014, Vol. 42, No. 1, 146-167
Publication Type :
Report
Accession number :
edsarx.1112.0752
Document Type :
Working Paper
Full Text :
https://doi.org/10.1214/12-AOP791