Back to Search
Start Over
Relaxation of Fermionic Excitations in a Strongly Attractive Fermi Gas in an Optical Lattice
- Source :
- Phys. Rev. Lett. 107, 145303 (2011)
- Publication Year :
- 2011
-
Abstract
- We theoretically study the relaxation of high energy single particle excitations into molecules in a system of attractive fermions in an optical lattice, both in the superfluid and the normal phase. In a system characterized by an interaction scale $U$ and a tunneling rate $t$, we show that the relaxation rate scales as $\sim Ct\exp(-\alpha U^2/t^2)$ in the large $U/t$ limit. We obtain explicit expressions for the exponent $\alpha$, both in the low temperature superfluid phase and the high temperature phase with pairing but no coherence between the molecules. We find that the relaxation rate decreases both with temperature and deviation of the fermion density from half-filling. We show that quasiparticle and phase degrees of freedom are effectively decoupled within experimental timescales allowing for observation of ordered states even at high total energy of the system.<br />Comment: 5 pages, 3 figures
- Subjects :
- Condensed Matter - Quantum Gases
Condensed Matter - Strongly Correlated Electrons
Subjects
Details
- Database :
- arXiv
- Journal :
- Phys. Rev. Lett. 107, 145303 (2011)
- Publication Type :
- Report
- Accession number :
- edsarx.1105.1778
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1103/PhysRevLett.107.145303