Back to Search Start Over

The stellar populations of early-type galaxies -- II. The effects of environment and mass

Authors :
Harrison, Craig
Colless, Matthew
Kuntschner, Harald
Couch, Warrick
De Propris, Roberto
Pracy, Michael
Publication Year :
2011

Abstract

The degree of influence that environment and mass have on the stellar populations of early-type galaxies is uncertain. In this paper we present the results of a spectroscopic analysis of the stellar populations of early-type galaxies aimed at addressing this question. The sample of galaxies is drawn from four clusters, with <z>=0.04, and their surrounding structure extending to ~10R_{vir}. We find that the distributions of the absorption-line strengths and the stellar population parameters age, metallicity and alpha-element abundance ratio do not differ significantly between the clusters and their outskirts, but the tight correlations found between these quantities and velocity dispersion within the clusters are weaker in their outskirts. All three stellar population parameters of cluster galaxies are positively correlated with velocity dispersion. Galaxies in clusters form a homogeneous class of objects that have similar distributions of line-strengths and stellar population parameters, and follow similar scaling relations regardless of cluster richness or morphology. We estimate the intrinsic scatter of the Gaussian distribution of metallicities to be 0.3 dex, while that of the alpha-element abundance ratio is 0.07 dex. The e-folding time of the exponential distribution of galaxy ages is estimated to be 900 Myr. The intrinsic scatters of the metallicity and alpha-element abundance ratio distributions can almost entirely be accounted for by the correlations with velocity dispersion and the intrinsic scatter about these relations. This implies that a galaxies mass plays the major role in determining its stellar population.<br />Comment: 20 pages, 12 figures, 5 tables, accepted by MNRAS

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1101.0568
Document Type :
Working Paper
Full Text :
https://doi.org/10.1111/j.1365-2966.2011.18195.x