Back to Search
Start Over
Global uniqueness and reconstruction for the multi-channel Gel'fand-Calder\'on inverse problem in two dimensions
- Source :
- Bulletin des Sciences Math\'ematiques 135, 5 (2011) 421-434
- Publication Year :
- 2010
-
Abstract
- We study the multi-channel Gel'fand-Calder\'on inverse problem in two dimensions, i.e. the inverse boundary value problem for the equation $-\Delta \psi + v(x) \psi = 0$, $x\in D$, where $v$ is a smooth matrix-valued potential defined on a bounded planar domain $D$. We give an exact global reconstruction method for finding $v$ from the associated Dirichlet-to-Neumann operator. This also yields a global uniqueness results: if two smooth matrix-valued potentials defined on a bounded planar domain have the same Dirichlet-to-Neumann operator then they coincide.
- Subjects :
- Mathematics - Analysis of PDEs
Mathematical Physics
Subjects
Details
- Database :
- arXiv
- Journal :
- Bulletin des Sciences Math\'ematiques 135, 5 (2011) 421-434
- Publication Type :
- Report
- Accession number :
- edsarx.1012.4667
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1016/j.bulsci.2011.04.007