Back to Search
Start Over
Constraints on the Assembly and Dynamics of Galaxies: I. Detailed Rest-frame Optical Morphologies on Kiloparsec-scale of z ~ 2 Star-forming Galaxies
- Publication Year :
- 2010
-
Abstract
- We present deep and high-resolution HST/NIC2 F160W imaging at 1.6micron of six z~2 star-forming galaxies with existing near-IR integral field spectroscopy from SINFONI at the VLT. The unique combination of rest-frame optical imaging and nebular emission-line maps provides simultaneous insight into morphologies and dynamical properties. The overall rest-frame optical emission of the galaxies is characterized by shallow profiles in general (Sersic index n<1), with median effective radii of ~5kpc. The morphologies are significantly clumpy and irregular, which we quantify through a non-parametric morphological approach, estimating the Gini (G), Multiplicity (Psi), and M_20 coefficients. The strength of the rest-frame optical emission lines in the F160W bandpass indicates that the observed structure is not dominated by the morphology of line-emitting gas, and must reflect the underlying stellar mass distribution of the galaxies. The sizes and structural parameters in the rest-frame optical continuum and Halpha emission reveal no significant differences, suggesting similar global distributions of the on-going star formation and more evolved stellar population. While no strong correlations are observed between stellar population parameters and morphology within the NIC2/SINFONI sample itself, a consideration of the sample in the context of a broader range of z~2 galaxy types indicates that these galaxies probe the high specific star formation rate and low stellar mass surface density part of the massive z~2 galaxy population, with correspondingly large effective radii, low Sersic indices, low G, and high Psi and M_20. The combined NIC2 and SINFONI dataset yields insights of unprecedented detail into the nature of mass accretion at high redshift. [Abridged]<br />Comment: 44 pages, 19 figures. Revised version accepted for publication in the Astrophysical Journal
- Subjects :
- Astrophysics - Cosmology and Nongalactic Astrophysics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1011.1507
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1088/0004-637X/731/1/65