Back to Search
Start Over
Low-ionization Line Emission from Starburst Galaxies: A New Probe of Galactic-Scale Outflows
- Publication Year :
- 2010
-
Abstract
- We study the kinematically narrow, low-ionization line emission from a bright, starburst galaxy at z = 0.69 using slit spectroscopy obtained with Keck/LRIS. The spectrum reveals strong absorption in MgII and FeII resonance transitions with Doppler shifts of -200 to -300 km/s, indicating a cool gas outflow. Emission in MgII near and redward of systemic velocity, in concert with the observed absorption, yields a P Cygni-like line profile similar to those observed in the Ly alpha transition in Lyman Break Galaxies. Further, the MgII emission is spatially resolved, and extends significantly beyond the emission from stars and HII regions within the galaxy. Assuming the emission has a simple, symmetric surface brightness profile, we find that the gas extends to distances > ~7 kpc. We also detect several narrow FeII* fine-structure lines in emission near the systemic velocity, arising from energy levels which are radiatively excited directly from the ground state. We suggest that the MgII and FeII* emission is generated by photon scattering in the observed outflow, and emphasize that this emission is a generic prediction of outflows. These observations provide the first direct constraints on the minimum spatial extent and morphology of the wind from a distant galaxy. Estimates of these parameters are crucial for understanding the impact of outflows in driving galaxy evolution.<br />Comment: Submitted to ApJL. 6 pages, 4 figures. Uses emulateapj format
- Subjects :
- Astrophysics - Cosmology and Nongalactic Astrophysics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1008.3397
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1088/0004-637X/728/1/55