Back to Search
Start Over
Higher secant varieties of $\mathbb{P}^n \times \mathbb{P}^m$ embedded in bi-degree $(1,d)$
- Source :
- J. Pure Appl. Algebra. 215, (2011), pp. 2853-2858
- Publication Year :
- 2010
-
Abstract
- Let $X^{(n,m)}_{(1,d)}$ denote the Segre-Veronese embedding of $\mathbb{P}^n \times \mathbb{P}^m$ via the sections of the sheaf $\mathcal{O}(1,d)$. We study the dimensions of higher secant varieties of $X^{(n,m)}_{(1,d)}$ and we prove that there is no defective $s^{th}$ secant variety, except possibly for $n$ values of $s$. Moreover when ${m+d \choose d}$ is multiple of $(m+n+1)$, the $s^{th}$ secant variety of $X^{(n,m)}_{(1,d)}$ has the expected dimension for every $s$.<br />Comment: 8 pages
- Subjects :
- Mathematics - Algebraic Geometry
Subjects
Details
- Database :
- arXiv
- Journal :
- J. Pure Appl. Algebra. 215, (2011), pp. 2853-2858
- Publication Type :
- Report
- Accession number :
- edsarx.1004.2614
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1016/j.jpaa.2011.04.005