Back to Search Start Over

Higher secant varieties of $\mathbb{P}^n \times \mathbb{P}^m$ embedded in bi-degree $(1,d)$

Authors :
Bernardi, Alessandra
Carlini, Enrico
Catalisano, Maria Virginia
Source :
J. Pure Appl. Algebra. 215, (2011), pp. 2853-2858
Publication Year :
2010

Abstract

Let $X^{(n,m)}_{(1,d)}$ denote the Segre-Veronese embedding of $\mathbb{P}^n \times \mathbb{P}^m$ via the sections of the sheaf $\mathcal{O}(1,d)$. We study the dimensions of higher secant varieties of $X^{(n,m)}_{(1,d)}$ and we prove that there is no defective $s^{th}$ secant variety, except possibly for $n$ values of $s$. Moreover when ${m+d \choose d}$ is multiple of $(m+n+1)$, the $s^{th}$ secant variety of $X^{(n,m)}_{(1,d)}$ has the expected dimension for every $s$.<br />Comment: 8 pages

Subjects

Subjects :
Mathematics - Algebraic Geometry

Details

Database :
arXiv
Journal :
J. Pure Appl. Algebra. 215, (2011), pp. 2853-2858
Publication Type :
Report
Accession number :
edsarx.1004.2614
Document Type :
Working Paper
Full Text :
https://doi.org/10.1016/j.jpaa.2011.04.005