Back to Search
Start Over
On an inverse problem for anisotropic conductivity in the plane
- Source :
- Inverse Problems 26, 2010, 095011
- Publication Year :
- 2010
-
Abstract
- Let $\hat \Omega \subset \mathbb R^2$ be a bounded domain with smooth boundary and $\hat \sigma$ a smooth anisotropic conductivity on $\hat \Omega$. Starting from the Dirichlet-to-Neumann operator $\Lambda_{\hat \sigma}$ on $\partial \hat \Omega$, we give an explicit procedure to find a unique domain $\Omega$, an isotropic conductivity $\sigma$ on $\Omega$ and the boundary values of a quasiconformal diffeomorphism $F:\hat \Omega \to \Omega$ which transforms $\hat \sigma$ into $\sigma$.<br />Comment: 9 pages, no figure
- Subjects :
- Mathematics - Analysis of PDEs
Mathematical Physics
Primary 35R30, Secondary 32G05
Subjects
Details
- Database :
- arXiv
- Journal :
- Inverse Problems 26, 2010, 095011
- Publication Type :
- Report
- Accession number :
- edsarx.1003.1880
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1088/0266-5611/26/9/095011