Back to Search Start Over

On an inverse problem for anisotropic conductivity in the plane

Authors :
Henkin, Gennadi
Santacesaria, Matteo
Source :
Inverse Problems 26, 2010, 095011
Publication Year :
2010

Abstract

Let $\hat \Omega \subset \mathbb R^2$ be a bounded domain with smooth boundary and $\hat \sigma$ a smooth anisotropic conductivity on $\hat \Omega$. Starting from the Dirichlet-to-Neumann operator $\Lambda_{\hat \sigma}$ on $\partial \hat \Omega$, we give an explicit procedure to find a unique domain $\Omega$, an isotropic conductivity $\sigma$ on $\Omega$ and the boundary values of a quasiconformal diffeomorphism $F:\hat \Omega \to \Omega$ which transforms $\hat \sigma$ into $\sigma$.<br />Comment: 9 pages, no figure

Details

Database :
arXiv
Journal :
Inverse Problems 26, 2010, 095011
Publication Type :
Report
Accession number :
edsarx.1003.1880
Document Type :
Working Paper
Full Text :
https://doi.org/10.1088/0266-5611/26/9/095011