Back to Search
Start Over
The Coherent-Constructible Correspondence for Toric Deligne-Mumford Stacks
- Source :
- IMRN 2014, No. 4, 914-954
- Publication Year :
- 2009
-
Abstract
- We extend our previous work arXiv:1007.0053 on coherent-constructible correspondence for toric varieties to include toric Deligne-Mumford (DM) stacks. Following Borisov-Chen-Smith, a toric DM stack $\cX_\bSi$ is described by a "stacky fan" $\bSi=(N,\Si,\beta)$, where $N$ is a finitely generated abelian group and $\Si$ is a simplicial fan in $N_\bR=N\otimes_{\bZ}\bR$. From $\bSi$ we define a conical Lagrangian $\Lambda_\bSi$ inside the cotangent $T^*M_\bR$ of the dual vector space $M_\bR$ of $N_\bR$, such that torus-equivariant, coherent sheaves on $\cX_\bSi$ are equivalent to constructible sheaves on $M_\bR$ with singular support in $\LbS$.<br />Comment: 30 pages, 2 figures
- Subjects :
- Mathematics - Algebraic Geometry
Mathematics - Combinatorics
Subjects
Details
- Database :
- arXiv
- Journal :
- IMRN 2014, No. 4, 914-954
- Publication Type :
- Report
- Accession number :
- edsarx.0911.4711
- Document Type :
- Working Paper