Back to Search
Start Over
Embedded hypersurfaces with constant $m^{\text{th}}$ mean curvature in a unit sphere
- Publication Year :
- 2009
-
Abstract
- In this paper, we study $n$-dimensional hypersurfaces with constant $m^{\text{th}}$ mean curvature in a unit sphere $S^{n+1}(1)$ and construct many compact nontrivial embedded hypersurfaces with constant $m^{\text{th}}$ mean curvature $H_m>0$ in $S^{n+1}(1)$, for $1\leq m\leq n-1$. In particular, if the $4^{\text{th}}$ mean curvature $H_4$ takes value between $\dfrac{1}{(\tan \frac{\pi}{k})^4}$ and $\dfrac{k^4-4}{n(n-4)}$ for any integer $k\geq3$, then there exists an $n$-dimensional ($n\geq 5$) compact nontrivial embedded hypersurface with constant $H_4$ in $S^{n+1}(1)$.
- Subjects :
- Mathematics - Differential Geometry
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.0904.0299
- Document Type :
- Working Paper