Back to Search Start Over

Optimization and Analysis of Distributed Averaging with Short Node Memory

Authors :
Oreshkin, Boris N.
Coates, Mark J.
Rabbat, Michael G.
Publication Year :
2009

Abstract

In this paper, we demonstrate, both theoretically and by numerical examples, that adding a local prediction component to the update rule can significantly improve the convergence rate of distributed averaging algorithms. We focus on the case where the local predictor is a linear combination of the node's two previous values (i.e., two memory taps), and our update rule computes a combination of the predictor and the usual weighted linear combination of values received from neighbouring nodes. We derive the optimal mixing parameter for combining the predictor with the neighbors' values, and carry out a theoretical analysis of the improvement in convergence rate that can be obtained using this acceleration methodology. For a chain topology on n nodes, this leads to a factor of n improvement over the one-step algorithm, and for a two-dimensional grid, our approach achieves a factor of n^1/2 improvement, in terms of the number of iterations required to reach a prescribed level of accuracy.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.0903.3537
Document Type :
Working Paper
Full Text :
https://doi.org/10.1109/TSP.2010.2043127