Back to Search Start Over

Combinatorial Hopf algebras and Towers of Algebras - Dimension, Quantization, and Functoriality

Authors :
Bergeron, Nantel
Lam, Thomas
Li, Huilan
Source :
Algebras and Representation Theory, Volume 15, Number 4 (2012), 675-696
Publication Year :
2009

Abstract

Bergeron and Li have introduced a set of axioms which guarantee that the Grothendieck groups of a tower of algebras $\bigoplus_{n\ge0}A_n$ can be endowed with the structure of graded dual Hopf algebras. Hivert and Nzeutzhap, and independently Lam and Shimozono constructed dual graded graphs from primitive elements in Hopf algebras. In this paper we apply the composition of these constructions to towers of algebras. We show that if a tower $\bigoplus_{n\ge0}A_n$ gives rise to graded dual Hopf algebras then we must have $\dim(A_n)=r^nn!$ where $r = \dim(A_1)$. In the case $r=1$ we give a conjectural classification. We then investigate a quantum version of the main theorem. We conclude with some open problems and a categorification of the construction. This paper is a full version of the summary arXiv: 0710.3744.<br />Comment: 18 pages. Minor changes, references updated

Details

Database :
arXiv
Journal :
Algebras and Representation Theory, Volume 15, Number 4 (2012), 675-696
Publication Type :
Report
Accession number :
edsarx.0903.1381
Document Type :
Working Paper
Full Text :
https://doi.org/10.1007/s10468-010-9258-y