Back to Search Start Over

Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project

Authors :
Aylott, Benjamin
Baker, John G.
Boggs, William D.
Boyle, Michael
Brady, Patrick R.
Brown, Duncan A.
Brügmann, Bernd
Buchman, Luisa T.
Buonanno, Alessandra
Cadonati, Laura
Camp, Jordan
Campanelli, Manuela
Centrella, Joan
Chatterji, Shourov
Christensen, Nelson
Chu, Tony
Diener, Peter
Dorband, Nils
Etienne, Zachariah B.
Faber, Joshua
Fairhurst, Stephen
Farr, Benjamin
Fischetti, Sebastian
Guidi, Gianluca
Goggin, Lisa M.
Hannam, Mark
Herrmann, Frank
Hinder, Ian
Husa, Sascha
Kalogera, Vicky
Keppel, Drew
Kidder, Lawrence E.
Kelly, Bernard J.
Krishnan, Badri
Laguna, Pablo
Lousto, Carlos O.
Mandel, Ilya
Marronetti, Pedro
Matzner, Richard
McWilliams, Sean T.
Matthews, Keith D.
Mercer, R. Adam
Mohapatra, Satyanarayan R. P.
Mroué, Abdul H.
Nakano, Hiroyuki
Ochsner, Evan
Pan, Yi
Pekowsky, Larne
Pfeiffer, Harald P.
Pollney, Denis
Pretorius, Frans
Raymond, Vivien
Reisswig, Christian
Rezzolla, Luciano
Rinne, Oliver
Robinson, Craig
Röver, Christian
Santamaría, Lucía
Sathyaprakash, Bangalore
Scheel, Mark A.
Schnetter, Erik
Seiler, Jennifer
Shapiro, Stuart L.
Shoemaker, Deirdre
Sperhake, Ulrich
Stroeer, Alexander
Sturani, Riccardo
Tichy, Wolfgang
Liu, Yuk Tung
van der Sluys, Marc
van Meter, James R.
Vaulin, Ruslan
Vecchio, Alberto
Veitch, John
Viceré, Andrea
Whelan, John T.
Zlochower, Yosef
Source :
Class.Quant.Grav.26:165008,2009
Publication Year :
2009

Abstract

The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter-estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.<br />Comment: 56 pages, 25 figures; various clarifications; accepted to CQG

Details

Database :
arXiv
Journal :
Class.Quant.Grav.26:165008,2009
Publication Type :
Report
Accession number :
edsarx.0901.4399
Document Type :
Working Paper
Full Text :
https://doi.org/10.1088/0264-9381/26/16/165008