Back to Search Start Over

Micro-crystalline inclusions analysis by PIXE and RBS

Authors :
Strivay, David
Ramboz, Claire
Gallien, J. P.
Grambole, D.
Kouzmanov, Kalin
Source :
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 266, 10 (2008) 2375-2378
Publication Year :
2008

Abstract

A characteristic feature of the nuclear microprobe using a 3 MeV proton beam is the long range of particles (around 70 \mu m in light matrices). The PIXE method, with EDS analysis and using the multilayer approach for treating the X-ray spectrum allows the chemistry of an intra-crystalline inclusion to be measured, provided the inclusion roof and thickness at the impact point of the beam (Z and e, respectively) are known (the depth of the inclusion floor is Z + e). The parameter Z of an inclusion in a mineral can be measured with a precision of around 1 \mu m using a motorized microscope. However, this value may significantly depart from Z if the analyzed inclusion has a complex shape. The parameter e can hardly be measured optically. By using combined RBS and PIXE measurements, it is possible to obtain the geometrical information needed for quantitative elemental analysis. This paper will present measurements on synthetic samples to investigate the advantages of the technique, and also on natural solid and fluid inclusions in quartz. The influence of the geometrical parameters will be discussed with regard to the concentration determination by PIXE. In particular, accuracy of monazite micro-inclusion dating by coupled PIXE-RBS will be presented.

Subjects

Subjects :
Physics - Geophysics

Details

Database :
arXiv
Journal :
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 266, 10 (2008) 2375-2378
Publication Type :
Report
Accession number :
edsarx.0806.1605
Document Type :
Working Paper
Full Text :
https://doi.org/10.1016/j.nimb.2008.03.068