Back to Search Start Over

Logarithmic Fourier integrals for the Riemann Zeta Function

Authors :
Kunik, Matthias
Publication Year :
2008

Abstract

We use symmetric Poisson-Schwarz formulas for analytic functions $f$ in the half-plane ${Re}(s)>\frac12$ with $\bar{f(\bar{s})}=f(s)$ in order to derive factorisation theorems for the Riemann zeta function. We prove a variant of the Balazard-Saias-Yor theorem and obtain explicit formulas for functions which are important for the distribution of prime numbers. In contrast to Riemann's classical explicit formula, these representations use integrals along the critical line ${Re}(s)=\frac12$ and Blaschke zeta zeroes.<br />Comment: 21 pages

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.0804.4829
Document Type :
Working Paper