Back to Search
Start Over
Arithmetic progressions in sets of fractional dimension
- Source :
- Geom. Funct. Anal. 19 (2009), 429-456
- Publication Year :
- 2007
-
Abstract
- Let $E\subset\rr$ be a closed set of Hausdorff dimension $\alpha$. We prove that if $\alpha$ is sufficiently close to 1, and if $E$ supports a probabilistic measure obeying appropriate dimensionality and Fourier decay conditions, then $E$ contains non-trivial 3-term arithmetic progressions.<br />Comment: 42 pages
Details
- Database :
- arXiv
- Journal :
- Geom. Funct. Anal. 19 (2009), 429-456
- Publication Type :
- Report
- Accession number :
- edsarx.0712.3882
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1007/s00039-009-0003-9