Back to Search
Start Over
Conformal changes of generalized complex structures
- Source :
- An. Stiint. Univ. Iasi, Mat. 54 (2008), 1-14
- Publication Year :
- 2007
-
Abstract
- A conformal change of $TM\oplus T^*M$ is a morphism of the form $(X,\alpha)\mapsto(X,e^\tau\alpha)$ $(X\in TM,\alpha\in T^*M,\tau\in C^\infty(M))$. We characterize the generalized almost complex and almost Hermitian structures that are locally conformal to integrable and to generalized K\"ahler structures, respectively, and give examples of such structures.<br />Comment: LaTex, 14 pages, Correction in Proposition 3.2
- Subjects :
- Mathematics - Differential Geometry
53C15
Subjects
Details
- Database :
- arXiv
- Journal :
- An. Stiint. Univ. Iasi, Mat. 54 (2008), 1-14
- Publication Type :
- Report
- Accession number :
- edsarx.0710.3667
- Document Type :
- Working Paper