Back to Search
Start Over
On potentially $K_{r+1}-U$-graphical Sequences
- Source :
- Utilitas Mathematica, 80 (2009),233-244
- Publication Year :
- 2007
-
Abstract
- Let $K_{m}-H$ be the graph obtained from $K_{m}$ by removing the edges set $E(H)$ of the graph $H$ ($H$ is a subgraph of $K_{m}$). We use the symbol $Z_4$ to denote $K_4-P_2.$ A sequence $S$ is potentially $K_{m}-H$-graphical if it has a realization containing a $K_{m}-H$ as a subgraph. Let $\sigma(K_{m}-H, n)$ denote the smallest degree sum such that every $n$-term graphical sequence $S$ with $\sigma(S)\geq \sigma(K_{m}-H, n)$ is potentially $K_{m}-H$-graphical. In this paper, we determine the values of $\sigma (K_{r+1}-U, n)$ for $n\geq 5r+18, r+1 \geq k \geq 7,$ $j \geq 6$ where $U$ is a graph on $k$ vertices and $j$ edges which contains a graph $K_3 \bigcup P_3$ but not contains a cycle on 4 vertices and not contains $Z_4$. There are a number of graphs on $k$ vertices and $j$ edges which contains a graph $(K_{3} \bigcup P_{3})$ but not contains a cycle on 4 vertices and not contains $Z_4$. (for example, $C_3\bigcup C_{i_1} \bigcup C_{i_2} \bigcup >... \bigcup C_{i_p}$ $(i_j\neq 4, j=2,3,..., p, i_1 \geq 5)$, $C_3\bigcup P_{i_1} \bigcup P_{i_2} \bigcup ... \bigcup P_{i_p}$ $(i_1 \geq 3)$, $C_3\bigcup P_{i_1} \bigcup C_{i_2} \bigcup >... \bigcup C_{i_p}$ $(i_j\neq 4, j=2,3,..., p, i_1 \geq 3)$, etc)<br />Comment: 10 pages
- Subjects :
- Mathematics - Combinatorics
05C35
05C07
Subjects
Details
- Database :
- arXiv
- Journal :
- Utilitas Mathematica, 80 (2009),233-244
- Publication Type :
- Report
- Accession number :
- edsarx.0710.0409
- Document Type :
- Working Paper