Back to Search
Start Over
Coulomb potential in one dimension with minimal length: A path integral approach
- Source :
- J. Math. Phys 48, 112104 (2007)
- Publication Year :
- 2007
-
Abstract
- We solve the path integral in momentum space for a particle in the field of the Coulomb potential in one dimension in the framework of quantum mechanics with the minimal length given by $(\Delta X)_{0}=\hbar \sqrt{\beta}$, where $\beta$ is a small positive parameter. From the spectral decomposition of the fixed energy transition amplitude we obtain the exact energy eigenvalues and momentum space eigenfunctions.
- Subjects :
- Quantum Physics
Subjects
Details
- Database :
- arXiv
- Journal :
- J. Math. Phys 48, 112104 (2007)
- Publication Type :
- Report
- Accession number :
- edsarx.0707.2043
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1063/1.2809267