Back to Search
Start Over
Properties of power series of analytic in a bidisc functions of bounded $\mathbf{L}$-index in joint variables
- Source :
- Carpathian Mathematical Publications; Vol 9, No 1 (2017); 6-12, Карпатские математические публикации; Vol 9, No 1 (2017); 6-12, Карпатські математичні публікації; Vol 9, No 1 (2017); 6-12
- Publication Year :
- 2017
- Publisher :
- Precarpathian National University, 2017.
-
Abstract
- We generalized some criteria of boundedness of $\mathbf{L}$-index in joint variables for analytic in a bidisc functions, where $\mathbf{L}(z)=(l_1(z_1,z_2),$ $l_{2}(z_1,z_2)),$ $l_j:\mathbb{D}^2\to \mathbb{R}_+$ is a continuous function, $j\in\{1,2\},$ $\mathbb{D}^2$ is a bidisc $\{(z_1,z_2)\in\mathbb{C}^2: |z_1<br />Нами узагальнено деякі критерії обмеженості $\mathbf{L}$-індексу за сукупністю змінних для аналітичних у бікрузі функцій, де $\mathbf{L}(z)=(l_1(z_1,z_2),$ $l_{2}(z_1,z_2)),$ $l_j:\mathbb{D}^2\to \mathbb{R}_+$ - неперервна функція, $j\in\{1,2\},$ $\mathbb{D}^2$ - бікруг $\{(z_1,z_2)\in\mathbb{C}^2: |z_1
- Subjects :
- analytic function, bidisc, bounded $\mathbf{L}$-index in joint variables, maximum modulus, partial derivative, dominating polynomial, power series
analytic function, bidisc, bounded $\mathbf{L}$-index in joint variables, maximum modulus, partial derivative, main polynomial, power series
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Carpathian Mathematical Publications
- Accession number :
- edsair.vasylstefany..aeeaf90fd6acffe993199d16f7bbff8f