Back to Search Start Over

A Radio-Nano-Platform for T1/T2 Dual-Mode PET-MR Imaging

Authors :
Gholami, Yaser Hadi
Yuan, Hushan
Wilks, Moses Q
Maschmeyer, Richard
Normandin, Marc D
Josephson, Lee
El Fakhri, Georges
Kuncic, Zdenka
Source :
International Journal of Nanomedicine
Publication Year :
2020
Publisher :
Dove, 2020.

Abstract

Purpose This study aimed to develop a chelate-free radiolabeled nanoparticle platform for simultaneous positron emission tomography (PET) and magnetic resonance (MR) imaging that provides contrast-enhanced diagnostic imaging and significant image quality gain by integrating the high spatial resolution of MR with the high sensitivity of PET. Methods A commercially available super-paramagnetic iron oxide nanoparticle (SPION) (Feraheme®, FH) was labeled with the [89Zr]Zr using a novel chelate-free radiolabeling technique, heat-induced radiolabeling (HIR). Radiochemical yield (RCY) and purity (RCP) were measured using size exclusion chromatography (SEC) and radio-thin layer chromatography (radio-TLC). Characterization of the non-radioactive isotope 90Zr-labeled FH was performed by transmission electron microscopy (TEM). Simultaneous PET-MR phantom imaging was performed with different 89Zr-FH concentrations. The MR quantitative image analysis determined the contrast-enhancing properties of FH. The signal-to-noise ratio (SNR) and full-width half-maximum (FWHM) of the line spread function (LSF) were calculated before and after co-registering the PET and MR image data. Results High RCY (92%) and RCP (98%) of the [89Zr]Zr-FH product was achieved. TEM analysis confirmed the 90Zr atoms adsorption onto the SPION surface (≈ 10% average radial increase). Simultaneous PET-MR scans confirmed the capability of the [89Zr]Zr-FH nano-platform for this multi-modal imaging technique. Relative contrast image analysis showed that [89Zr]Zr-FH can act as a dual-mode T1/T2 contrast agent. For co-registered PET-MR images, higher spatial resolution (FWHM enhancement ≈ 3) and SNR (enhancement ≈ 8) was achieved at a clinical dose of radio-isotope and Fe. Conclusion Our results demonstrate FH is a highly suitable SPION-based platform for chelate-free labeling of PET tracers for hybrid PET-MR. The high RCY and RCP confirmed the robustness of the chelate-free HIR technique. An overall image quality gain was achieved compared to PET- or MR-alone imaging with a relatively low dosage of [89Zr]Zr-FH. Additionally, FH is suitable as a dual-mode T1/T2 MR image contrast agent.<br />Video abstract Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: http://youtu.be/Me_QBfX7I3s

Details

Language :
English
ISSN :
11782013 and 11769114
Volume :
15
Database :
OpenAIRE
Journal :
International Journal of Nanomedicine
Accession number :
edsair.pmid.dedup....f7da3d663097075ff154d90a3e1b3c36