Back to Search Start Over

Neural differentiation modulates the vertebrate brain specific splicing program

Authors :
Madgwick, Alicia
Fort, Philippe
Hanson, Peter S.
Thibault, Philippe
Gaudreau, Marie-Claude
Lutfalla, Georges
Möröy, Tarik
Abou Elela, Sherif
Chaudhry, Bill
Elliott, David J.
Morris, Christopher M.
Venables, Julian P.
Centre de recherche en Biologie Cellulaire (CRBM)
Université Montpellier 2 - Sciences et Techniques (UM2)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)
Newcastle University [Newcastle]
Université de Sherbrooke (UdeS)
Institut de Recherches Cliniques de Montréal (IRCM)
Université de Montréal (UdeM)
Dynamique des interactions membranaires normales et pathologiques (DIMNP)
Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Institute of Genetic Medicine [Newcastle, U.K.]
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université Montpellier 1 (UM1)
Source :
PLoS ONE, Vol 10, Iss 5, p e0125998 (2015), PLoS ONE, PLoS ONE, Public Library of Science, 2015, 10 (5), pp.e0125998. ⟨10.1371/journal.pone.0125998⟩
Publication Year :
2015
Publisher :
Public Library of Science (PLoS), 2015.

Abstract

International audience; Alternative splicing patterns are known to vary between tissues but these patterns have been found to be predominantly peculiar to one species or another, implying only a limited function in fundamental neural biology. Here we used high-throughput RT-PCR to monitor the expression pattern of all the annotated simple alternative splicing events (ASEs) in the Reference Sequence Database, in different mouse tissues and identified 93 brain-specific events that shift from one isoform to another (switch-like) between brain and other tissues. Consistent with an important function, regulation of a core set of 9 conserved switch-like ASEs is highly conserved, as they have the same pattern of tissue-specific splicing in all vertebrates tested: human, mouse and zebrafish. Several of these ASEs are embedded within genes that encode proteins associated with the neuronal microtubule network, and show a dramatic and concerted shift within a short time window of human neural stem cell differentiation. Similarly these exons are dynamically regulated in zebrafish development. These data demonstrate that although alternative splicing patterns often vary between species , there is nonetheless a core set of vertebrate brain-specific ASEs that are conserved between species and associated with neural differentiation.

Details

Language :
English
ISSN :
19326203
Volume :
10
Issue :
5
Database :
OpenAIRE
Journal :
PLoS ONE
Accession number :
edsair.pmid.dedup....def20ab0464652f07a6ccfea35e95372