Back to Search Start Over

Expanding the toolbox for Trypanosoma cruzi: A parasite line incorporating a bioluminescence-fluorescence dual reporter and streamlined CRISPR/Cas9 functionality for rapid in vivo localisation and phenotyping

Authors :
Costa, FC
Francisco, AF
Jayawardhana, S
Calderano, SG
Lewis, MD
Olmo, F
Beneke, T
Gluenz, E
Sunter, J
Dean, S
Kelly, JM
Taylor, MC
Source :
PLoS Neglected Tropical Diseases, Vol 12, Iss 4, p e0006388 (2018), PLoS Neglected Tropical Diseases
Publication Year :
2018
Publisher :
Public Library of Science, 2018.

Abstract

Background Infection with Trypanosoma cruzi causes Chagas disease, a major public health problem throughout Latin America. There is no vaccine and the only drugs have severe side effects. Efforts to generate new therapies are hampered by limitations in our understanding of parasite biology and disease pathogenesis. Studies are compromised by the complexity of the disease, the long-term nature of the infection, and the fact that parasites are barely detectable during the chronic stage. In addition, functional dissection of T. cruzi biology has been restricted by the limited flexibility of the genetic manipulation technology applicable to this parasite. Methodology/Principal findings Here, we describe two technical innovations, which will allow the role of the parasite in disease progression to be better assessed. First, we generated a T. cruzi reporter strain that expresses a fusion protein comprising red-shifted luciferase and green fluorescent protein domains. Bioluminescence allows the kinetics of infection to be followed within a single animal, and specific foci of infection to be pinpointed in excised tissues. Fluorescence can then be used to visualise individual parasites in tissue sections to study host-parasite interactions at a cellular level. Using this strategy, we have been routinely able to find individual parasites within chronically infected murine tissues for the first time. The second advance is the incorporation of a streamlined CRISPR/Cas9 functionality into this reporter strain that can facilitate genome editing using a PCR-based approach that does not require DNA cloning. This system allows the rapid generation of null mutants and fluorescently tagged parasites in a background where the in vivo phenotype can be rapidly assessed. Conclusions/Significance The techniques described here will have multiple applications for studying aspects of T. cruzi biology and Chagas disease pathogenesis previously inaccessible to conventional approaches. The reagents and cell lines have been generated as a community resource and are freely available on request.<br />Author summary 5–8 million people in Latin America are infected with the single-cell parasite Trypanosoma cruzi, the causative agent of Chagas disease. Of these, approximately one-third will develop chronic disease pathology, leading to disability and premature death. Only two drugs are available, both of which can have severe side effects. We know relatively little about the chronic phase of this infection because the parasite burden is extremely low, and animal models have limitations. Here, we describe a T. cruzi reporter strain that has been genetically modified to express a fusion protein which is both bioluminescent and fluorescent. These parasites can be monitored throughout the infection, and individual parasites identified in tissue sections from infected mice. This allows us for the first time to analyse host-parasite interactions at a cellular level in the chronic phase of infection. We have also incorporated a streamlined version of the CRISPR/Cas9 genome editing system into the reporter strain. We demonstrated the utility of this system by generating null mutants in the flagellar attachment protein GP72, by replacing the green fluorescent protein with a red fluorescent protein, and by tagging the endogenous protein DNA topoisomerase 1A. This T. cruzi reporter line will significantly enhance our ability to unravel the pathogenesis and immunology of chronic Chagas disease.

Details

Language :
English
ISSN :
19352727
Database :
OpenAIRE
Journal :
PLoS Neglected Tropical Diseases, Vol 12, Iss 4, p e0006388 (2018), PLoS Neglected Tropical Diseases
Accession number :
edsair.pmid.dedup....cd504603e42b39f96768e09d2d7fa153