Back to Search
Start Over
A new conotoxin isolated from Conus consors venom acting selectively on axons and motor nerve terminals through a Na+-dependent mechanism
- Source :
- European Journal of Neuroscience, European Journal of Neuroscience, Wiley, 1999, 11 (9), pp.3134-3142. ⟨10.1046/j.1460-9568.1999.00732.x⟩
- Publication Year :
- 1999
-
Abstract
- International audience; A novel conotoxin was isolated and characterized from the venom of the fish-hunting marine snail Conus consors. The peptide was identified by screening chromatography fractions of the crude venom that produced a marked contraction and extension of the caudal and dorsal fins in fish, and noticeable spontaneous contractions of isolated frog neuromuscular preparations. The peptide, named CcTX, had 30 amino acids and the following scaffold: X11CCX7CX2CXCX3C. At the frog neuromuscular junction, CcTx at nanomolar concentrations selectively increased nerve terminal excitability so that a single nerve stimulation triggered trains of repetitive or spontaneous synaptic potentials and action potentials. In contrast, CcTx had no noticeable effect on muscle excitability even at concentrations 100 x higher than those that affected motor nerve terminals, as revealed by direct muscle stimulation. In addition, CcTx increased miniature endplate potential (MEPP) frequency in a Ca2+-free medium supplemented with ethylene glycol-bis-(beta-aminoethyl ether)-N,N,N', N'-tetraacetic acid (EGTA). Blockade of voltage-dependent sodium channels with tetrodotoxin (TTX) either prevented or suppressed the increase of MEPP frequency induced by the toxin. CcTx also produced a TTX-sensitive depolarization of the nodal membrane in single myelinated axons giving rise, in some cases, to repetitive and/or spontaneous action potential discharges. In addition, CcTx increased the nodal volume of myelinated axons, as determined using confocal laser scanning microscopy. This increase was reversed by external hyperosmolar solutions and was prevented by pretreatment of axons with TTX. It is suggested that CcTx, by specifically activating neuronal voltage-gated sodium channels at the resting membrane potential, produced Na+ entry into nerve terminals and axons without directly affecting skeletal muscle fibres. CcTx belongs to a novel family of conotoxins that targets neuronal voltage-gated sodium channels.
- Subjects :
- Motor Neurons
Neurotransmitter Agents
Behavior, Animal
[SDV]Life Sciences [q-bio]
[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology
Molecular Sequence Data
Snails
Sodium
Fishes
Neuromuscular Junction
Presynaptic Terminals
Action Potentials
Mollusk Venoms
Synaptic Transmission
Axons
Mass Spectrometry
Sodium Channels
Electrophysiology
Ranvier's Nodes
Animals
[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]
Amino Acid Sequence
Conotoxins
Ion Channel Gating
Subjects
Details
- ISSN :
- 0953816X and 14609568
- Volume :
- 11
- Issue :
- 9
- Database :
- OpenAIRE
- Journal :
- The European journal of neuroscience
- Accession number :
- edsair.pmid.dedup....b97bd62e3923aa0716e279ff4196c42c
- Full Text :
- https://doi.org/10.1046/j.1460-9568.1999.00732.x⟩