Back to Search Start Over

Carbamylation of elastic fibers is a molecular substratum of aortic stiffness

Authors :
Doué, Manon
Okwieka, Anaïs
Berquand, Alexandre
Gorisse, Laëtitia
Maurice, Pascal
Velard, Frédéric
Terryn, Christine
Molinari, Michaël
Duca, Laurent
Piétrement, Christine
Gillery, Philippe
Jaisson, Stéphane
Matrice extracellulaire et dynamique cellulaire - UMR 7369 (MEDyC)
Université de Reims Champagne-Ardenne (URCA)-SFR CAP Santé (Champagne-Ardenne Picardie Santé)
Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Recherche en Nanosciences - EA 4682 (LRN)
Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-SFR Condorcet
Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)
Biomatériaux et inflammation en site osseux - EA 4691 (BIOS)
Université de Reims Champagne-Ardenne (URCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-SFR CAP Santé (Champagne-Ardenne Picardie Santé)
Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)
Université de Reims Champagne-Ardenne (URCA)
Plateforme en Imagerie Cellulaire et Tissulaire (PICT)
Chimie et Biologie des Membranes et des Nanoobjets (CBMN)
Université de Bordeaux (UB)-École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Centre Hospitalier Universitaire de Reims (CHU Reims)
Tis study was funded by the University of Reims Champagne-Ardenne and the Reims University Hospital through the 'Projet Hospitalo Universitaire VIeillissement protéique et VAsculaire (PHU-VIVA)' program and was also supported by grants from the Committee of American Memorial Hospital (Reims, France and Boston, MA, USA) and the Centre National de la Recherche Scientifque (CNRS, France). Te region Grand Est, the FEDERprogram, and the DRRT Grand Est are acknowledged for the funding of the Nano’Mat platform.
Velard, Frédéric
SFR Condorcet
Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Université de Reims Champagne-Ardenne (URCA)-SFR CAP Santé (Champagne-Ardenne Picardie Santé)
École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut de Chimie du CNRS (INC)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)
Source :
Scientific Reports, Scientific Reports, 2021, 11, pp.17827. ⟨10.1038/s41598-021-97293-5⟩, Scientific Reports, Nature Publishing Group, 2021, 11, pp.17827. ⟨10.1038/s41598-021-97293-5⟩, Scientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; Because of their long lifespan, matrix proteins of the vascular wall, such as elastin, are subjected to molecular aging characterized by non-enzymatic post-translational modifications, like carbamylation which results from the binding of cyanate (mainly derived from the dissociation of urea) to protein amino groups. While several studies have demonstrated a relationship between increased plasma concentrations of carbamylated proteins and the development of cardiovascular diseases, molecular mechanisms explaining the involvement of protein carbamylation in these pathological contexts remain to be fully elucidated. The aim of this work was to determine whether vascular elastic fibers could be carbamylated, and if so, what impact this phenomenon would have on the mechanical properties of the vascular wall. Our experiments showed that vascular elastin was carbamylated in vivo. Fiber morphology was unchanged after in vitro carbamylation, as well as its sensitivity to elastase degradation. In mice fed with cyanate-supplemented water in order to increase protein carbamylation within the aortic wall, an increased stiffness in elastic fibers was evidenced by atomic force microscopy, whereas no fragmentation of elastic fiber was observed. In addition, this increased stiffness was also associated with an increase in aortic pulse wave velocity in ApoE −/− mice. These results provide evidence for the carbamylation of elastic fibers which results in an increase in their stiffness at the molecular level. These alterations of vessel wall mechanical properties may contribute to aortic stiffness, suggesting a new role for carbamylation in cardiovascular diseases.

Details

Language :
English
ISSN :
20452322
Database :
OpenAIRE
Journal :
Scientific Reports, Scientific Reports, 2021, 11, pp.17827. ⟨10.1038/s41598-021-97293-5⟩, Scientific Reports, Nature Publishing Group, 2021, 11, pp.17827. ⟨10.1038/s41598-021-97293-5⟩, Scientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
Accession number :
edsair.pmid.dedup....971e3ecda20a5018fcc7aebd44d24670
Full Text :
https://doi.org/10.1038/s41598-021-97293-5⟩