Back to Search Start Over

Reliability and Accuracy of Peri-Interventional Stenosis Grading in Peripheral Artery Disease Using Color-Coded Quantitative Fluoroscopy: A Phantom Study Comparing a Clinical and Scientific Postprocessing Software

Authors :
Patrick, Ghibes
Sasan, Partovi
Gerd, Grözinger
Petros, Martirosian
Fritz, Schick
Konstantin, Nikolaou
Dominik, Ketelsen
Roland, Syha
Ulrich, Grosse
Source :
BioMed Research International, Vol 2018 (2018), BioMed Research International
Publication Year :
2018
Publisher :
Hindawi Limited, 2018.

Abstract

Purpose. To assess quantitative stenosis grading by color-coded fluoroscopy using an in vitro pulsatile flow phantom. Methods. Three different stenotic tubes (80%, 60%, and 40% diameter restriction) and a nonstenotic reference tube were compared regarding their different flow behavior by using contrast-enhanced fluoroscopy with a flat-detector system for visualisation purposes. Time-density curves (TDC), area under the curve (AUC), time-to-peak (TTP), and different ROI sizes were analyzed in three independent measurements using two different postprocessing software solutions. In addition, exemplary TDCs of a patient with a high-grade stenosis before and after stent angioplasty were acquired. Results. Color-coded fluoroscopy enabled depiction of differences in AUC and TDC between high-grade (80%), middle (60%), low-grade (40%), and nonstenotic tubes. The best correlation between high-, middle-, and low-grade stenosis was appreciated in ROIs behind the stenosis. This effect was enhanced by using longer integration times (5s, 7s) and a maximum frame rate of image acquisition for analysis (correlation coefficient rho=0.9284 at 5s). TTP showed no significant differences between high- and low-grade stenosis. Conclusions. Various clinical studies in the literature already demonstrated reproducible and reliable stenosis grading by analyzing TDCs acquired with color-coded fluoroscopy. In contrast to TTP, AUC values derived in ROIs behind the stenosis proved to be reliable parameters for stenosis grading. However, our results also demonstrate that several factors are able to significantly impact the evaluation of AUC values. More precisely, accuracy of acquired AUC values can be improved by choosing longer integration times, a large ROI size adapted to the vessel diameter, and a higher frame rate of image acquisition.

Details

Language :
English
ISSN :
23146141 and 23146133
Volume :
2018
Database :
OpenAIRE
Journal :
BioMed Research International
Accession number :
edsair.pmid.dedup....8fdac5dd63fb4454da879a9aaf5632ea