Back to Search Start Over

Concurrent 2018 Hot Extremes Across Northern Hemisphere Due to Human‐Induced Climate Change

Authors :
M. M. Vogel
J. Zscheischler
R. Wartenburger
D. Dee
S. I. Seneviratne
Source :
Earth's Future, Vogel, M. M.; Zscheischler, J.; Wartenburger, R.; Dee, D.; Seneviratne, S. I. (2019). Concurrent 2018 Hot Extremes Across Northern Hemisphere Due to Human-Induced Climate Change. Earth's future, 7(7), pp. 692-703. Wiley 10.1029/2019EF001189 , Earth's Future, Vol 7, Iss 7, Pp 692-703 (2019)
Publication Year :
2019
Publisher :
John Wiley and Sons Inc., 2019.

Abstract

Extremely high temperatures pose an immediate threat to humans and ecosystems. In recent years, many regions on land and in the ocean experienced heat waves with devastating impacts that would have been highly unlikely without human‐induced climate change. Impacts are particularly severe when heat waves occur in regions with high exposure of people or crops. The recent 2018 spring‐to‐summer season was characterized by several major heat and dry extremes. On daily average between May and July 2018 about 22% of the populated and agricultural areas north of 30° latitude experienced concurrent hot temperature extremes. Events of this type were unprecedented prior to 2010, while similar conditions were experienced in the 2010 and 2012 boreal summers. Earth System Model simulations of present‐day climate, that is, at around +1 °C global warming, also display an increase of concurrent heat extremes. Based on Earth System Model simulations, we show that it is virtually certain (using Intergovernmental Panel on Climate Change calibrated uncertainty language) that the 2018 north hemispheric concurrent heat events would not have occurred without human‐induced climate change. Our results further reveal that the average high‐exposure area projected to experience concurrent warm and hot spells in the Northern Hemisphere increases by about 16% per additional +1 °C of global warming. A strong reduction in fossil fuel emissions is paramount to reduce the risks of unprecedented global‐scale heat wave impacts.<br />Key Points Twenty‐two percent of populated and agricultural areas of the Northern Hemisphere concurrently experienced hot extremes between May and July 2018It is virtually certain that these 2018 northhemispheric concurrent heat events could not have occurred without human‐induced climate changeWe would experience a GCWH18‐like event nearly 2 out of 3 years at +1.5 °C and every year at +2 °C global warming

Details

Language :
English
ISSN :
23284277
Volume :
7
Issue :
7
Database :
OpenAIRE
Journal :
Earth's Future
Accession number :
edsair.pmid.dedup....8ceef6c5c8e2ae99acfd96839f6768e3
Full Text :
https://doi.org/10.1029/2019EF001189