Back to Search Start Over

G-Networks to Predict the Outcome of Sensing of Toxicity

Authors :
Grenet, Ingrid
Yin, Yonghua
Comet, Jean-Paul
Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S)
Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Imperial College London
Source :
Sensors, Sensors, MDPI, 2018, 18 (10), pp.3483. ⟨10.3390/s18103483⟩, Sensors (Basel, Switzerland), Sensors, Vol 18, Iss 10, p 3483 (2018), Volume 18, Issue 10
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

G-Networks and their simplified version known as the Random Neural Network have often been used to classify data. In this paper, we present a use of the Random Neural Network to the early detection of potential of toxicity chemical compounds through the prediction of their bioactivity from the compounds&rsquo<br />physico-chemical structure, and propose that it be automated using machine learning (ML) techniques. Specifically the Random Neural Network is shown to be an effective analytical tool to this effect, and the approach is illustrated and compared with several ML techniques.

Details

Language :
English
ISSN :
14248220
Database :
OpenAIRE
Journal :
Sensors, Sensors, MDPI, 2018, 18 (10), pp.3483. ⟨10.3390/s18103483⟩, Sensors (Basel, Switzerland), Sensors, Vol 18, Iss 10, p 3483 (2018), Volume 18, Issue 10
Accession number :
edsair.pmid.dedup....4d73811cb16eeb358a372eecde90c1de
Full Text :
https://doi.org/10.3390/s18103483⟩