Back to Search Start Over

Epigenetic regulation of cyclooxygenase-2 by methylation of c8orf4 in pulmonary fibrosis

Authors :
Evans, IC
Barnes, JL
Garner, IM
Pearce, DR
Maher, TM
Shiwen, X
Renzoni, EA
Wells, AU
Denton, CP
Laurent, GJ
Abraham, DJ
McAnulty, RJ
Source :
Clinical Science (London, England : 1979)
Publication Year :
2016
Publisher :
Portland Press Ltd., 2016.

Abstract

The present study demonstrates that hypermethylation and silencing of chromosome 8 open reading frame 4 (thyroid cancer protein 1, TC-1) (c8orf4), a transcriptional regulator of cyclooxygenase-2 (COX-2), is a major contributor to failure of fibroblasts to up-regulate COX-2 in pulmonary fibrosis. DNA methyltransferase (DNMT) inhibition reduces c8orf4 methylation, restores COX-2 expression and normalizes fibroblast function.<br />Fibroblasts derived from the lungs of patients with idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc) produce low levels of prostaglandin (PG) E2, due to a limited capacity to up-regulate cyclooxygenase-2 (COX-2). This deficiency contributes functionally to the fibroproliferative state, however the mechanisms responsible are incompletely understood. In the present study, we examined whether the reduced level of COX-2 mRNA expression observed in fibrotic lung fibroblasts is regulated epigenetically. The DNA methylation inhibitor, 5-aza-2′-deoxycytidine (5AZA) restored COX-2 mRNA expression by fibrotic lung fibroblasts dose dependently. Functionally, this resulted in normalization of fibroblast phenotype in terms of PGE2 production, collagen mRNA expression and sensitivity to apoptosis. COX-2 methylation assessed by bisulfite sequencing and methylation microarrays was not different in fibrotic fibroblasts compared with controls. However, further analysis of the methylation array data identified a transcriptional regulator, chromosome 8 open reading frame 4 (thyroid cancer protein 1, TC-1) (c8orf4), which is hypermethylated and down-regulated in fibrotic fibroblasts compared with controls. siRNA knockdown of c8orf4 in control fibroblasts down-regulated COX-2 and PGE2 production generating a phenotype similar to that observed in fibrotic lung fibroblasts. Chromatin immunoprecipitation demonstrated that c8orf4 regulates COX-2 expression in lung fibroblasts through binding of the proximal promoter. We conclude that the decreased capacity of fibrotic lung fibroblasts to up-regulate COX-2 expression and COX-2-derived PGE2 synthesis is due to an indirect epigenetic mechanism involving hypermethylation of the transcriptional regulator, c8orf4.

Details

Language :
English
ISSN :
14708736 and 01435221
Volume :
130
Issue :
8
Database :
OpenAIRE
Journal :
Clinical Science (London, England : 1979)
Accession number :
edsair.pmid.dedup....161b3d73204929cee8750a69b806cc91