Back to Search
Start Over
Restoration of the third law in spin ice thin films
- Source :
- Nature Communications
- Publication Year :
- 2013
-
Abstract
- A characteristic feature of spin ice is its apparent violation of the third law of thermodynamics. This leads to a number of interesting properties including the emergence of an effective vacuum for magnetic monopoles and their currents – magnetricity. Here we add a new dimension to the experimental study of spin ice by fabricating thin epitaxial films of Dy2Ti2O7, varying between 5 and 60 monolayers on an inert substrate. The films show the distinctive characteristics of spin ice at temperatures >2 K, but at lower temperature we find evidence of a zero entropy state. This restoration of the third law in spin ice thin films is consistent with a predicted strain-induced ordering of a very unusual type, previously discussed for analogous electrical systems. Our results show how the physics of frustrated pyrochlore magnets such as spin ice may be significantly modified in thin-film samples.<br />In bulk, the spin ice Dy2Ti2O7 has posed an enigma because – due to its slow dynamics – it is unclear whether and how the material will reach a zero entropy state at zero temperature. Here, the authors show that in thin films of Dy2Ti2O7 a zero entropy state is induced at 0.4 K, plausibly by lattice strain.
Details
- ISSN :
- 20411723
- Volume :
- 5
- Database :
- OpenAIRE
- Journal :
- Nature communications
- Accession number :
- edsair.pmid.dedup....13fa1ea154674830a479351780cbc51c