Back to Search Start Over

Network hyperexcitability within the deep layers of the pilocarpine-treated rat entorhinal cortex

Authors :
De Guzman, P.
Inaba, Y.
Baldelli, E.
De Curtis, M.
Biagini, G.
Avoli, Massimo
Publication Year :
2008
Publisher :
Editore attuale: BLACKWELL PUBLISHING LTD, 9600 GARSINGTON RD, OXFORD, ENGLAND, OXON, OX4 2DG precedente: Cambridge University Press / New York:40 West 20th Street:New York, NY 10011:(800)872-7423, (212)924-3900, EMAIL: journals_subscriptions@cup.org, INTERNET: http://www.journals.cambridge.org, Fax: (212)691-3239, 2008.

Abstract

In this study we report that in the presence of normal buffer, epileptiform discharges occur spontaneously (duration = 2.60 +/- 0.49 s) or can be induced by electrical stimuli (duration = 2.50 +/- 0.62 s) in the entorhinal cortex (EC) of brain slices obtained from pilocarpine-treated rats but not in those from age-matched, nonepileptic control (NEC) animals. These network-driven epileptiform events consist of field oscillatory sequences at frequencies greater than 200 Hz that most often initiate in the lateral EC and propagate to the medial EC with 4-63 ms delays. The NMDA receptor antagonist CPP depresses the rate of occurrence (P0.01) of these spontaneous epileptiform discharges but fails in blocking them. Paradoxically, stimulus-induced epileptiform responses are enhanced in duration during CPP application. However, concomitant application of NMDA and non-NMDA glutamatergic antagonists abolishes spontaneous and stimulus-induced epileptiform events. Intracellular recordings from lateral EC layer V cells indicate a lower frequency of spontaneous hyperpolarizing postsynaptic potentials in pilocarpine-treated tissue than in NEC (P0.002) both under control conditions and with glutamatergic receptor blockade; the reversal potential of pharmacologically isolated GABA(A) receptor-mediated inhibitory postsynaptic potentials has similar values in the two types of tissue. Finally, immunohistochemical analysis shows that parvalbumin-positive interneurons are selectively reduced in number in EC deep layers. Collectively, these results indicate that reduced inhibition within the pilocarpine-treated EC layer V may promote network epileptic hyperexcitability.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.pmid.dedup....031d83c2dd31bb122fd886129582732f