Back to Search Start Over

PEGylated Curcumin Derivative Attenuates Hepatic Steatosis via CREB/PPAR

Authors :
Yu, Liu
Fei, Cheng
Yuxuan, Luo
Zhu, Zhan
Peng, Hu
Hong, Ren
Huadong, Tang
Mingli, Peng
Source :
BioMed Research International
Publication Year :
2017

Abstract

Curcumin has the potential to cure dyslipidemia and nonalcoholic fatty liver disease (NAFLD). However, its therapeutic effects are curbed by poor bioavailability. Our previous work has shown that modification of curcumin with polyethylene glycol (PEG) improves blood concentration and tissue distribution. This study sought to investigate the role of a novel PEGylated curcumin derivative (Curc-mPEG454) in regulating hepatic lipid metabolism and to elucidate the underlying molecular mechanism in a high-fat-diet- (HFD-) fed C57BL/6J mouse model. Mice were fed either a control chow diet (D12450B), an HFD (D12492) as the NAFLD model, or an HFD with Curc-mPEG454 administered by intraperitoneal injection at 50 mg/kg or 100 mg/kg for 16 weeks. We found that Curc-mPEG454 significantly lowered the body weight and serum triglyceride (TG) levels and reduced liver lipid accumulation in HFD-induced NAFLD mice. It was also shown that Curc-mPEG454 suppressed the HFD-induced upregulated expression of CD36 and hepatic peroxisome proliferator activated receptor-γ (PPAR-γ), a positive regulator of CD36. Moreover, Curc-mPEG454 dramatically activated cAMP response element-binding (CREB) protein, which negatively controls hepatic PPAR-γ expression. These findings suggest that Curc-mPEG454 reverses HFD-induced hepatic steatosis via the activation of CREB inhibition of the hepatic PPAR-γ/CD36 pathway, which may be an effective therapeutic for high-fat-diet-induced NAFLD.

Details

ISSN :
23146141
Volume :
2017
Database :
OpenAIRE
Journal :
BioMed research international
Accession number :
edsair.pmid..........fe031fd9167bd956686330a8872110bb