Back to Search Start Over

The 25-26 nt Small RNAs in

Authors :
Jinbu, Jia
Wenqin, Lu
Chengcheng, Zhong
Ran, Zhou
Junjie, Xu
Wei, Liu
Xiuhong, Gou
Qinhu, Wang
Junliang, Yin
Cheng, Xu
Weixing, Shan
Source :
Frontiers in Microbiology
Publication Year :
2017

Abstract

Small RNAs (sRNAs) are important non-coding RNA regulators, playing key roles in developmental regulation, transposon suppression, environmental response, host–pathogen interaction and other diverse biological processes. However, their roles in oomycetes are poorly understood. Here, we performed sRNA sequencing and RNA sequencing of Phytophthora parasitica at stages of vegetative growth and infection of Arabidopsis roots to examine diversity and function of sRNAs in P. parasitica, a model hemibiotrophic oomycete plant pathogen. Our results indicate that there are two distinct types of sRNA-generating loci in P. parasitica genome, giving rise to clusters of 25–26 nt and 21 nt sRNAs, respectively, with no significant strand-biases. The 25–26 nt sRNA loci lie predominantly in gene-sparse and repeat-rich regions, and overlap with over 7000 endogenous gene loci. These overlapped genes are typically P. parasitica species-specific, with no homologies to the sister species P. infestans. They include approximately 40% RXLR effector genes, 50% CRN effector genes and some elicitor genes. The transcripts of most of these genes could not be detected at both the vegetative mycelium and infection stages as revealed by RNA sequencing, indicating that the 25–26 nt sRNAs are associated with efficient silencing of these genes. The 21 nt sRNA loci typically overlap with the exon regions of highly expressed genes, suggesting that the biogenesis of the 21 nt sRNAs may be dependent on the level of gene transcription and that these sRNAs do not mediate efficient silencing of homologous genes. Analyses of the published P. infestans sRNA and mRNA sequencing data consistently show that the 25–26 nt sRNAs, but not the 21 nt sRNAs, may mediate efficient gene silencing in Phytophthora.

Details

ISSN :
1664302X
Volume :
8
Database :
OpenAIRE
Journal :
Frontiers in microbiology
Accession number :
edsair.pmid..........fce54b794e66948c0390ff48457cde38