Back to Search Start Over

Biallelic

Authors :
Sara, Carvalhal
Ingrid, Bader
Martin A, Rooimans
Anneke B, Oostra
Jesper A, Balk
René G, Feichtinger
Christine, Beichler
Michael R, Speicher
Johanna M, van Hagen
Quinten, Waisfisz
Mieke, van Haelst
Martijn, Bruijn
Alexandra, Tavares
Johannes A, Mayr
Rob M F, Wolthuis
Raquel A, Oliveira
Job, de Lange
Source :
Science Advances
Publication Year :
2022

Abstract

Budding uninhibited by benzimidazoles (BUB1) contributes to multiple mitotic processes. Here, we describe the first two patients with biallelic BUB1 germline mutations, who both display microcephaly, intellectual disability, and several patient-specific features. The identified mutations cause variable degrees of reduced total protein level and kinase activity, leading to distinct mitotic defects. Both patients’ cells show prolonged mitosis duration, chromosome segregation errors, and an overall functional spindle assembly checkpoint. However, while BUB1 levels mostly affect BUBR1 kinetochore recruitment, impaired kinase activity prohibits centromeric recruitment of Aurora B, SGO1, and TOP2A, correlating with anaphase bridges, aneuploidy, and defective sister chromatid cohesion. We do not observe accelerated cohesion fatigue. We hypothesize that unresolved DNA catenanes increase cohesion strength, with concomitant increase in anaphase bridges. In conclusion, BUB1 mutations cause a neurodevelopmental disorder, with clinical and cellular phenotypes that partially resemble previously described syndromes, including autosomal recessive primary microcephaly, mosaic variegated aneuploidy, and cohesinopathies.<br />Description<br />Biallelic germline mutations in a gene important for mitotic fidelity, BUB1, are first described and functionally assessed.

Details

ISSN :
23752548
Volume :
8
Issue :
3
Database :
OpenAIRE
Journal :
Science advances
Accession number :
edsair.pmid..........f78dfdf066237826698f3c845e9c86b3