Back to Search
Start Over
Introduction of extended LEC14-type branching into core-fucosylated biantennary N-glycan
- Source :
- The FEBS journal. 272(8)
- Publication Year :
- 2005
-
Abstract
- A series of enzymatic substitutions modifies the basic structure of complex-type biantennary N-glycans. Among them, a beta1,2-linked N-acetylglucosamine residue is introduced to the central mannose moiety of the core-fucosylated oligosaccharide by N-acetylglucosaminyltransferase VII. This so-called LEC14 epitope can undergo galactosylation at the beta1,2-linked N-acetylglucosamine residue. Guided by the hypothesis that structural modifications in the N-glycan alter its capacity to serve as ligand for lectins, we prepared a neoglycoprotein with the extended LEC14 N-glycan and tested its properties in three different assays. In order to allow comparison to previous results on other types of biantennary N-glycans the functionalization of the glycans for coupling and assay conditions were deliberately kept constant. Compared to the core-fucosylated N-glycan no significant change in affinity was seen when testing three galactoside-specific proteins. However, cell positivity in flow cytofluorimetry was enhanced in six of eight human tumor lines. Analysis of biodistribution in tumor-bearing mice revealed an increase of blood clearance by about 40%, yielding a favorable tumor/blood ratio. Thus, the extended LEC14 motif affects binding properties to cellular lectins on cell surfaces and organs when compared to the core-fucosylated biantennary N-glycan. The results argue in favor of the concept of viewing substitutions as molecular switches for lectin-binding affinity. Moreover, they have potential relevance for glycoengineering of reagents in tumor imaging.
Details
- ISSN :
- 1742464X
- Volume :
- 272
- Issue :
- 8
- Database :
- OpenAIRE
- Journal :
- The FEBS journal
- Accession number :
- edsair.pmid..........ef939e10079e791421af3475bad6aa95