Back to Search Start Over

Monitoring Mitochondrial Function in

Authors :
María E, Santana-Román
Paola, Maycotte
Salvador, Uribe-Carvajal
Cristina, Uribe-Alvarez
Nayeli, Alvarado-Medina
Mohsin, Khan
Aleem, Siddiqui
Victoria, Pando-Robles
Source :
Insects
Publication Year :
2021

Abstract

Simple Summary Dengue is an important and growing public health problem. To date, no specific therapeutic or effective prophylactic measures exist. Therefore, vector control remains the primary approach to prevent dengue virus (DENV) infection in humans. Recent findings highlight that viruses regulate mitochondrial function and dynamics to facilitate viral proliferation. In this study, we report that DENV infection modulates mitochondrial physiology in C6/36 mosquito cells. Our results revealed that DENV alters redox metabolism and mitochondrial membrane potential without any significant change in cellular ATP pool or viability. In addition, we observed preservation of the respiratory control ratio and translocation of mitofusins to mitochondria. These results suggest that mitochondrial fusion could be required for the maintenance of mitochondrial function in C6/36 mosquito cells infected with DENV. Abstract Aedes aegypti and Aedes albopictus mosquitoes are responsible for dengue virus (DENV) transmission in tropical and subtropical areas worldwide, where an estimated 3 billion people live at risk of DENV exposure. DENV-infected individuals show symptoms ranging from sub-clinical or mild to hemorrhagic fever. Infected mosquitoes do not show detectable signs of disease, even though the virus maintains a lifelong persistent infection. The interactions between viruses and host mitochondria are crucial for virus replication and pathogenicity. DENV infection in vertebrate cells modulates mitochondrial function and dynamics to facilitate viral proliferation. Here, we describe that DENV also regulates mitochondrial function and morphology in infected C6/36 mosquito cells (derived from Aedes albopictus). Our results showed that DENV infection increased ROS (reactive oxygen species) production, modulated mitochondrial transmembrane potential and induced changes in mitochondrial respiration. Furthermore, we offer the first evidence that DENV causes translocation of mitofusins to mitochondria in the C6/36 mosquito cell line. Another protein Drp-1 (Dynamin-related protein 1) did not localize to mitochondria in DENV-infected cells. This observation therefore ruled out the possibility that the abovementioned alterations in mitochondrial function are associated with mitochondrial fission. In summary, this report provides some key insights into the virus–mitochondria crosstalk in DENV infected mosquito cells.

Details

ISSN :
20754450
Volume :
12
Issue :
10
Database :
OpenAIRE
Journal :
Insects
Accession number :
edsair.pmid..........ef3c8c11cf870c7af0fc86dd00329e7e