Back to Search Start Over

A Phragmén–Lindelöf Theorem via Proximate Orders, and the Propagation of Asymptotics

Authors :
Jiménez-Garrido, Javier
Sanz, Javier
Schindl, Gerhard
Source :
Journal of Geometric Analysis
Publication Year :
2019
Publisher :
Springer US, 2019.

Abstract

We prove that, for asymptotically bounded holomorphic functions in a sector in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C},$$\end{document}C, an asymptotic expansion in a single direction towards the vertex with constraints in terms of a logarithmically convex sequence admitting a nonzero proximate order entails asymptotic expansion in the whole sector with control in terms of the same sequence. This generalizes a result by Fruchard and Zhang for Gevrey asymptotic expansions, and the proof strongly rests on a suitably refined version of the classical Phragmén–Lindelöf theorem, here obtained for functions whose growth in a sector is specified by a nonzero proximate order in the sense of Lindelöf and Valiron.

Details

Language :
English
ISSN :
1559002X and 10506926
Volume :
30
Issue :
4
Database :
OpenAIRE
Journal :
Journal of Geometric Analysis
Accession number :
edsair.pmid..........e8518fe3c533d1f54334ca4f2ba1689a