Back to Search
Start Over
A Phragmén–Lindelöf Theorem via Proximate Orders, and the Propagation of Asymptotics
- Source :
- Journal of Geometric Analysis
- Publication Year :
- 2019
- Publisher :
- Springer US, 2019.
-
Abstract
- We prove that, for asymptotically bounded holomorphic functions in a sector in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C},$$\end{document}C, an asymptotic expansion in a single direction towards the vertex with constraints in terms of a logarithmically convex sequence admitting a nonzero proximate order entails asymptotic expansion in the whole sector with control in terms of the same sequence. This generalizes a result by Fruchard and Zhang for Gevrey asymptotic expansions, and the proof strongly rests on a suitably refined version of the classical Phragmén–Lindelöf theorem, here obtained for functions whose growth in a sector is specified by a nonzero proximate order in the sense of Lindelöf and Valiron.
Details
- Language :
- English
- ISSN :
- 1559002X and 10506926
- Volume :
- 30
- Issue :
- 4
- Database :
- OpenAIRE
- Journal :
- Journal of Geometric Analysis
- Accession number :
- edsair.pmid..........e8518fe3c533d1f54334ca4f2ba1689a