Back to Search
Start Over
Ku affects the CHK1-dependent G(2) checkpoint after ionizing radiation
- Source :
- Cancer research. 62(21)
- Publication Year :
- 2002
-
Abstract
- There are two major pathways for repairing DNA double strand breaks in mammalian cells: nonhomologous end joining (NHEJ) and homologous recombination repair (HRR). The nonhomologous end joining repair is deficient in cells without Ku, whereas HRR is highly efficient in such cells compared with their wild-type counterparts. The mechanism remains unclear. We reported previously that Ku80(-/-) cells show a stronger ATM-dependent S-phase checkpoint response than Ku80(+/+) cells after ionizing radiation (IR; X-Y. Zhou et al., Oncogene, 21:6377-6381, 2002). We report in this study that Ku80(-/-) cells also show a much stronger G(2) accumulation than Ku80(+/+) cells after IR. The stronger G(2) checkpoint response in Ku80(-/-) cells is ATM independent but is accompanied with a higher activity of CHK1 kinase. Treatment with Chk1 antisense oligonucleotide abolishes the stronger G(2) checkpoint response and sensitizes Ku80(-/-) cells to IR. These data indicate that the stronger G(2) checkpoint response shown in Ku80(-/-) cells is CHK1 dependent and suggest that the CHK1-dependent checkpoint response contributes to the highly efficient HRR in such cells.
- Subjects :
- G2 Phase
DNA Repair
Tumor Suppressor Proteins
DNA Helicases
Nuclear Proteins
Antigens, Nuclear
Cell Cycle Proteins
Ataxia Telangiectasia Mutated Proteins
Fibroblasts
Oligonucleotides, Antisense
Protein Serine-Threonine Kinases
Transfection
DNA-Binding Proteins
Mice
Checkpoint Kinase 1
Animals
Humans
Ku Autoantigen
Protein Kinases
Subjects
Details
- ISSN :
- 00085472
- Volume :
- 62
- Issue :
- 21
- Database :
- OpenAIRE
- Journal :
- Cancer research
- Accession number :
- edsair.pmid..........e7c1f87785bd7a8723bf3992194ba56c