Back to Search Start Over

A simple way to unify multicriteria decision analysis (MCDA) and stochastic multicriteria acceptability analysis (SMAA) using a Dirichlet distribution in benefit-risk assessment

Authors :
Gaelle, Saint-Hilary
Stephanie, Cadour
Veronique, Robert
Mauro, Gasparini
Source :
Biometrical journal. Biometrische Zeitschrift. 59(3)
Publication Year :
2016

Abstract

Quantitative methodologies have been proposed to support decision making in drug development and monitoring. In particular, multicriteria decision analysis (MCDA) and stochastic multicriteria acceptability analysis (SMAA) are useful tools to assess the benefit-risk ratio of medicines according to the performances of the treatments on several criteria, accounting for the preferences of the decision makers regarding the relative importance of these criteria. However, even in its probabilistic form, MCDA requires the exact elicitations of the weights of the criteria by the decision makers, which may be difficult to achieve in practice. SMAA allows for more flexibility and can be used with unknown or partially known preferences, but it is less popular due to its increased complexity and the high degree of uncertainty in its results. In this paper, we propose a simple model as a generalization of MCDA and SMAA, by applying a Dirichlet distribution to the weights of the criteria and by making its parameters vary. This unique model permits to fit both MCDA and SMAA, and allows for a more extended exploration of the benefit-risk assessment of treatments. The precision of its results depends on the precision parameter of the Dirichlet distribution, which could be naturally interpreted as the strength of confidence of the decision makers in their elicitation of preferences.

Details

ISSN :
15214036
Volume :
59
Issue :
3
Database :
OpenAIRE
Journal :
Biometrical journal. Biometrische Zeitschrift
Accession number :
edsair.pmid..........e5b218c594a0a1f1706399bf2fdb2ab7